Riteria For Plurigarmonicity Of M-Harmonic Functions
Abstract
It is proved in the paper that if a function f z
is M-harmonic in a polydisk
n U , then the function 2 f z
is Msubharmonic.
In addition, the case is ???? ̃
???? = ???? ̃
???????? = 0(???? ≠ 0, ???? ≠ 1, ???? ∈ ℝ) proved to f z
be a n -harmonic function. Moreover,
if the function is harmonic on the unit ball and ????????(????) is M-harmonic, then it is proved that ????????(????) is pluriharmonic. At the same
time, if the function is harmonic and M-harmonic in the polydisk ????2 ⊂ ????2, then it is proved that it is n-harmonic..
References
[1] [1] Ronkin L. I. Introduction to the Theory of Entire Functions
of Many Variables. - M. Nauka, 1971. - 432.
[2] [2] Shabat B.V. “Introduction to complex analysis” Part 2. M.
Science. 1976.-321.
[3] [3] Rudin U. Theory of functions in the unit ball from. // M. Mir.
1984.-457.
[4] [4] Stoll M., Invariant potential theory in the unit ball of
n
,
London Mathematical Society Lecture Note Series, 199.
Cambridge University Press, Cambridge. 2003.-181.
[5] [5] Madrakhimov R.M., Omonov O.I. Pluroharmonicity of Mharmonic
functions, // Ilm sarchashmalari - Urganch-2018-12,
pp. 12-14.
[6] [6] Forelli F. pluriharmonicity in terme of harmonic
slices//Math.Scand. 1977. V. 41. P. 358-364.
[7] [7] Madrakhimov R.M., Vaisova M.D. Criteria of
pluriharmonicity of harmonic functions // Dan RUzyu
Tashkent, 2008, No. 5. Pp. 19-20.
[8] [8] Madrakhimov R.M. Some criteria of pluriharmonicity.
Izvestiya AN UzSSR. Ser. Phys. Mat. Nauk No. 3. 1986.